• Formal definition of a **limit**: Let f(x) be a function defined on an open interval that contains x = a, except possibly at x = a itself. Then, $\lim_{x \to a} f(x) = L$ iff for every $\varepsilon > 0$, there

is some number $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$.

- Main ways to go about evaluating a limit:
 - Plug it in.
 - Factor and cancel.
 - Rationalize or use conjugates.
 - Squeeze Theorem.
 - Take the logarithm.
 - You can also pull out the logarithm (or any other operator) if necessary.
 - L'Hôpital's Rule (to be introduced later).
- Limits can be broken up into its individual components of sums and factors.
- **One-sided limit**: The limit as we approach x = a from only one side of the function.
 - If $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x)$, then $\lim_{x \to a} f(x)$ does not exist.
- Squeeze theorem: If $g(x) \le f(x) \le h(x)$ on a closed interval containing x = a (except possibly x = a itself) and $\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x)$, then $\lim_{x \to a} f(x) = L$.
- **Continuity**: There is continuity at x = a if $\lim f(x) = f(a)$ (i.e. function = limit)
- Infinite limits:
 - Plug it in.
 - If the function is the quotient of two polynomials, then divide by *x* to the degree of the polynomial in the denominator to evaluate the limit as $x \to \pm \infty$.
 - If the function is periodic, the limit does not exist as $x \to \pm \infty$
 - If there is a vertical asymptote at x = a, then one-sided limits as $x \rightarrow a$ is either positive or negative infinity.
 - End behavior: evaluate the limit of f(x) as $x \to \pm \infty$
 - Use them to find asymptotes.

Additional ideas:

• Squeeze theorem can be used to prove certain trigonometric limits, especially

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \text{ and } \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$
 This can be used with trigonometric summation properties to prove $\frac{d}{dx} \sin x = \cos x$ and $\frac{d}{dx} \cos x = -\sin x$.

Limits